A list of Popular Machine Learning Algorithms

Sanjay Kumar PhD
2 min readAug 27, 2021

--

Many algorithms are grouped together based on similarity in their function .

Regression Algorithms

  • Ordinary Least Squares Regression (OLSR)
  • Linear Regression
  • Logistic Regression
  • Stepwise Regression
  • Multivariate Adaptive Regression Splines (MARS)
  • Locally Estimated Scatterplot Smoothing (LOESS)

Instance-based Algorithms

  • k-Nearest Neighbor (kNN)
  • Learning Vector Quantization (LVQ)
  • Self-Organizing Map (SOM)
  • Locally Weighted Learning (LWL)
  • Support Vector Machines (SVM)

Regularization Algorithms

  • Ridge Regression
  • Least Absolute Shrinkage and Selection Operator (LASSO)
  • Elastic Net
  • Least-Angle Regression (LARS)

Decision Tree Algorithms

  • Classification and Regression Tree (CART)
  • Iterative Dichotomiser 3 (ID3)
  • C4.5 and C5.0 (different versions of a powerful approach)
  • Chi-squared Automatic Interaction Detection (CHAID)
  • Decision Stump
  • M5
  • Conditional Decision Trees

Bayesian Algorithms

  • Naive Bayes
  • Gaussian Naive Bayes
  • Multinomial Naive Bayes
  • Averaged One-Dependence Estimators (AODE)
  • Bayesian Belief Network (BBN)
  • Bayesian Network (BN)

Clustering Algorithms

  • k-Means
  • k-Medians
  • Expectation Maximisation (EM)
  • Hierarchical Clustering

Association Rule Learning Algorithms

  • Apriori algorithm
  • Eclat algorithm

Artificial Neural Network Algorithms

  • Perceptron
  • Multilayer Perceptrons (MLP)
  • Back-Propagation
  • Stochastic Gradient Descent
  • Hopfield Network
  • Radial Basis Function Network (RBFN)

Deep Learning Algorithms

  • Convolutional Neural Network (CNN)
  • Recurrent Neural Networks (RNNs)
  • Long Short-Term Memory Networks (LSTMs)
  • Stacked Auto-Encoders
  • Deep Boltzmann Machine (DBM)
  • Deep Belief Networks (DBN)

Dimensionality Reduction Algorithms

  • Principal Component Analysis (PCA)
  • Principal Component Regression (PCR)
  • Partial Least Squares Regression (PLSR)
  • Sammon Mapping
  • Multidimensional Scaling (MDS)
  • Projection Pursuit
  • Linear Discriminant Analysis (LDA)
  • Mixture Discriminant Analysis (MDA)
  • Quadratic Discriminant Analysis (QDA)
  • Flexible Discriminant Analysis (FDA)

Ensemble Algorithms

  • Boosting
  • Bootstrapped Aggregation (Bagging)
  • AdaBoost
  • Weighted Average (Blending)
  • Stacked Generalization (Stacking)
  • Gradient Boosting Machines (GBM)
  • Gradient Boosted Regression Trees (GBRT)
  • Random Forest

--

--

Sanjay Kumar PhD
Sanjay Kumar PhD

Written by Sanjay Kumar PhD

AI Product | Data Science| GenAI | Machine Learning | LLM | AI Agents | NLP| Data Analytics | Data Engineering | Deep Learning | Statistics

No responses yet